Source code for special.nested_sampling

#! /usr/bin/env python

"""
Module with functions for posterior sampling of the model spectra parameters
using nested sampling (either ``nestle`` or ``ultranest`` samplers).

.. [nes13]
   | Barbary 2013
   | **nestle**
   | *GitHub*
   | `https://github.com/kbarbary/nestle
     <https://github.com/kbarbary/nestle>`_

.. [SKI04]
   | Skilling 2004
   | **Bayesian Inference and Maximum Entropy Methods in Science and Engineering:
     24th International Workshop on Bayesian Inference and Maximum Entropy
     Methods in Science and Engineering**
   | *American Institute of Physics Conference Series, Volume 735, pp. 395-405*
   | `https://ui.adsabs.harvard.edu/abs/2004AIPC..735..395S
     <https://ui.adsabs.harvard.edu/abs/2004AIPC..735..395S>`_

.. [MUK06]
   | Mukherjee et al. 2006
   | **A Nested Sampling Algorithm for Cosmological Model Selection**
   | *ApJL, Volume 638, Issue 2, pp. 51-54*
   | `https://arxiv.org/abs/astro-ph/0508461
     <https://arxiv.org/abs/astro-ph/0508461>`_

.. [FER09]
   | Feroz et al. 2009
   | **MULTINEST: an efficient and robust Bayesian inference tool for cosmology
     and particle physics**
   | *MNRAS, Volume 398, Issue 4, pp. 1601-1614*
   | `https://arxiv.org/abs/0809.3437
     <https://arxiv.org/abs/0809.3437>`_

.. [BUC21]
   | Buchner 2021
   | **UltraNest - a robust, general purpose Bayesian inference engine**
   | *JOSS, Volume 6, Issue 60, p. 3001*
   | `https://arxiv.org/abs/2101.09604
     <https://arxiv.org/abs/2101.09604>`_

"""



__author__ = 'V. Christiaens',
__all__ = ['nested_spec_sampling',
           'show_nestle_results',
           'show_ultranest_results']

from astropy import constants as con
import nestle
import ultranest
from ultranest.plot import cornerplot, PredictionBand
import numpy as np
from matplotlib import pyplot as plt
import pandas as pd

from .config import time_ini, timing
from .fits import open_fits, write_fits
from .mcmc_sampling import lnlike, confidence, show_walk_plot, show_corner_plot
from .model_resampling import make_resampled_models, make_model_from_params
from .utils_nested import un_burning
from os.path import isfile
from scipy.special import ndtri


[docs]def nested_spec_sampling(init, lbda_obs, spec_obs, err_obs, dist, grid_param_list, labels, bounds, resamp_before=True, model_grid=None, model_reader=None, em_lines={}, em_grid={}, dlbda_obs=None, instru_corr=None, instru_res=None, instru_idx=None, use_weights=True, filter_reader=None, AV_bef_bb=False, units_obs='si', units_mod='si', interp_order=1, priors=None, physical=True, interp_nonexist=True, output_dir='special/', grid_name='resamp_grid.fits', sampler='ultranest', method='single', npoints=100, dlogz=0.2, verbose=True, **kwargs): """ Runs a nested sampling algorithm in order to retrieve the best-fit parameters for given spectral model and observed spectrum.. The result of this procedure is either a ``nestle`` [nes13]_ or ``ultranest`` [BUC21]_ object (depending on the chosen sampler) containing the samples from the posterior distributions of each of the parameters. For the ``nestle`` sampler, several methods are available corresponding to MCMC [SKI04]_, single ellipsoid [MUK06]_ or multiple ellipsoid [FER09]_. Parameters ---------- init: numpy ndarray or tuple Initial guess on the best fit parameters of the spectral fit. Length of the tuple should match the total number of free parameters. - first all parameters related to loaded models (e.g. 'Teff', 'logg') - then the planet photometric radius 'R', in Jupiter radius - (optionally) the intensity of emission lines (labels must match \ those in the em_lines dict), in units of the model spectrum (x mu) - (optionally) the optical extinction 'Av', in mag - (optionally) the ratio of total to selective optical extinction 'Rv' - (optionally) 'Tbb1', 'Rbb1', 'Tbb2', 'Rbb2', etc. for each extra bb \ contribution lbda_obs : numpy 1d ndarray or list Wavelengths of observed spectrum. If several instruments were used, the wavelengths should be ordered per instrument, not necessarily as monotonically increasing wavelength. Hereafter, :math:`n_{ch}` is the length of ``lbda_obs``. spec_obs : numpy 1d ndarray or list Observed spectrum for each value of ``lbda_obs``. Should have a length of :math:`n_{ch}`. err_obs : numpy 1d/2d ndarray or list Uncertainties on the observed spectrum. The array (list) can have either a length of :math:`n_{ch}`, or a shape of :math:`(2,n_{ch})` for lower (first column) and upper (second column) uncertainties provided. dist : float Distance in parsec, used for flux scaling of the models. grid_param_list : list of 1d numpy arrays/lists Should contain list/numpy 1d arrays with available grid of model parameters (should only contain the sampled parameters, not the models themselves). The models will be loaded with ``model_reader``. labels: Tuple of strings Tuple of labels in the same order as initial_state: - first all parameters related to loaded models (e.g. 'Teff', 'logg') - then the planet photometric radius 'R', in Jupiter radius - (optionally) the flux of emission lines (labels should match those \ in the em_lines dictionary), in units of the model spectrum (times mu) - (optionally) the optical extinction 'Av', in mag - (optionally) the ratio of total to selective optical extinction 'Rv' - (optionally) 'Tbb1', 'Rbb1', 'Tbb2', 'Rbb2', etc. for each extra bb \ contribution. bounds: dictionary Each entry should be associated with a tuple corresponding to lower and upper bounds respectively. Bounds should be provided for ALL model parameters, including 'R' (planet photometric radius). 'Av' (optical extinction) is optional. If provided here, Av will also be fitted. All keywords that are neither 'R', 'Av' nor 'M' will be considered model grid parameters. Examples: >>> bounds = {'Teff':(1000,2000), 'logg':(3.0,4.5), 'R':(0.1,5)} >>> bounds = {'Teff':(1000,2000), 'logg':(3.0,4.5), 'R':(0.1,5), >>> 'Av':(0.,2.5), 'Rv':(1,5)} >>> bounds = {'Teff':(1000,2000), 'logg':(3.0,4.5), 'R':(0.1,5), >>> 'Av':(0.,2.5), 'BrG':(1e-17,1e-15)} >>> bounds = {'Teff':(2000,3000), 'logg':(3.0,4.5), 'R':(1.,5.), >>> 'Tbb1':(500,1500), 'Rbb1':(0.1,1.)} resamp_before: bool, optional Whether to prepare the whole grid of resampled models before entering the MCMC, i.e. to avoid doing it at every MCMC step. Recommended. Only reason not to: model grid is too large and individual models require being opened and resampled at each step. model_grid : numpy N-d array, optional If provided, should contain the grid of model spectra for each free parameter of the given grid. I.e. for a grid of :math:`n_T` values of :math:`T_{eff}` and :math:`n_g` values of log(:math:`g`), the numpy array should have a shape of :math:`(n_T, n_g, n_{ch}, 2)`, where the last 2 dimensions correspond to wavelength and fluxes respectively. If provided, ``model_grid`` takes precedence over ``model_name``/ ``model_reader``. model_reader : python routine, opt External routine that reads a model file and returns a 2D numpy array, where the first column corresponds to wavelengths, and the second contains model values. See example routine in ``special.model_resampling.interpolate_model`` description. em_lines: dictionary, opt Dictionary of emission lines to be added on top of the model spectrum. Each dict entry should be the name of the line, assigned to a tuple of 4 values: 1. the wavelength (in :math:`\mu` m); 2. a string indicating whether line intensity is expressed in flux \ ('F'), luminosity ('L') or log(L/LSun) ("LogL"); 3. the FWHM of the gaussian (or None if to be set automatically); 4. whether the FWHM is expressed in 'nm', 'mu' or 'km/s'. The third and fourth can also be set to None. In that case, the FWHM of the gaussian will automatically be set to the equivalent width of the line, calculated from the flux to be injected and the continuum level (measured in the grid model to which the line is injected). Examples: >>> em_lines = {'BrG':(2.1667,'F',None, None)}; >>> em_lines = {'BrG':(2.1667,'LogL', 100, 'km/s')} em_grid: dictionary pointing to lists, opt Dictionary where each entry corresponds to an emission line and points to a list of values to inject for emission line fluxes. For computation efficiency, interpolation will be performed between the points of this grid during the MCMC sampling. Dictionary entries should match those in ``labels`` and ``em_lines``. Examples: >>> BrGmin, BrGmax = -5, 5 >>> em_grid = {'BrG': np.arange(BrGmin, BrGmax, 20)} >>> BrGmin, BrGmax = -5, 5 >>> PaBmin, PaBmax = -2, 7 >>> em_grid = {'PaB': np.arange(PaBmin, PaBmax, 20), >>> 'BrG': np.arange(BrGmin, BrGmax, 20)} dlbda_obs : numpy 1d ndarray or list, optional Respective spectral channel width or FWHM of the photometric filters used for each point of the observed spectrum. This vector is used to infer which part(s) of a combined spectro+photometric spectrum should involve convolution+subsampling (model resolution higher than measurements), interpolation (the opposite), or convolution by the transmission curve of a photometric filter. If not provided, it will be inferred from the difference between consecutive lbda_obs points (i.e. inaccurate for a combined spectrum). It must be provided IF one wants to weigh each measurement based on the spectral resolution of each instrument (as in [OLO16]_), through the ``use_weights`` argument. instru_corr : numpy 2d ndarray, optional Spectral correlation between post-processed images in which the spectrum is measured. It is specific to the instrument, PSF subtraction algorithm and radial separation of the companion from the central star. Can be computed using ``special.spec_corr.spectral_correlation``. In case of a spectrum obtained with different instruments, it is recommended to construct the final spectral_correlation matrix with ``special.spec_corr.combine_corrs``. If ``instru_corr`` is not provided, the uncertainties in each spectral channel will be considered independent. See [GRE16]_ for more details. instru_res : float or list of floats/strings, optional The mean instrumental resolving power(s) OR filter names. This is used to convolve the model spectrum. If several instruments are used, provide a list of resolving power values / filter names, one for each instrument used. instru_idx: numpy 1d array, optional 1d array containing an index representing each instrument used to obtain the spectrum, label them from 0 to the number of instruments (:math:`n_{ins}`). Zero for points that don't correspond to any of the ``instru_res`` values provided, and i in :math:`[1,n_{ins}]` for points associated to instru_res[i-1]. This parameter must be provided if the spectrum consists of points obtained with different instruments. use_weights: bool, optional For the likelihood calculation, whether to weigh each point of the spectrum based on the spectral resolution or bandwidth of photometric filters used. Weights will be proportional to ``dlbda_obs/lbda_obs`` if ``dlbda_obs`` is provided, or set to 1 for all points otherwise. filter_reader: python routine, optional External routine that reads a filter file and returns a 2D numpy array, where the first column corresponds to wavelengths, and the second contains transmission values. Important: if not provided, but strings are detected in instru_res, the default file reader will be used. It assumes the following format for the files: - first row contains headers (titles of each column) - starting from 2nd row: 1st column: wavelength, 2nd col.: transmission - Unit of wavelength can be provided in parentheses of first header \ key name: e.g. "WL(AA)" for angstrom, "wavelength(mu)" for micrometer \ or "lambda(nm)" for nanometer. Note: only what is in parentheses \ matters for the units. AV_bef_bb: bool, optional If both extinction and an extra bb component are free parameters, whether to apply extinction before adding the BB component (e.g. extinction mostly from circumplanetary dust) or after the BB component (e.g. mostly insterstellar extinction). units_obs : str, opt {'si','cgs','jy'} Units of observed spectrum. 'si' for W/m^2/mu; 'cgs' for ergs/s/cm^2/mu or 'jy' for janskys. units_mod: str, opt {'si','cgs','jy'} Units of the model. 'si' for W/m^2/mu; 'cgs' for ergs/s/cm^2/mu or 'jy' for janskys. If different to units_obs, the spectrum units will be converted. interp_order: int or tuple of int, optional, {-1,0,1} Interpolation mode for model interpolation. If a tuple of integers, the length should match the number of grid dimensions and will trigger a different interpolation mode for the different parameters. - -1: Order 1 spline interpolation in logspace for the parameter - 0: nearest neighbour model - 1: Order 1 spline interpolation priors: dictionary, opt If not None, sets prior estimates for each parameter of the model. Each entry should be set to either None (no prior) or a tuple of 2 elements containing prior estimate and uncertainty on the estimate. Missing entries (i.e. provided in ``bounds`` dictionary but not here) will be associated no prior. 'M' can be used for a prior on the mass of the planet. In that case the corresponding prior log probability is computed from the values for parameters 'logg' and 'R'. Examples: >>> priors = {'logg':(3.5,0.2), 'Rv':(3.1,0.2)} >>> priors = {'Teff':(1600,100), 'logg':(3.5,0.5), 'R':(1.6,0.1), >>> 'Av':(1.8,0.2), 'M':(10,3)} Important: dictionary entry names should match exactly those of ``bounds``. physical: bool, opt In case of extra black body component(s) to a photosphere, whether to force lower temperature than the photosphere effective temperature. interp_nonexist: bool, opt Whether to interpolate non-existing models in the grid. Only used if resamp_before is set to True. w : float or tuple The relative size of the bounds (around the initial state ``init``) for each parameter. If a float the same relative size is considered for each parameter. E.g. if 0.1, bounds will be set to: (0.9*params[0], 1.1*params[0]), ... (0.9*params[N-1], 1.1*params[N-1]), to True), or make it and write it if it does not. output_dir: str, optional The name of the output directory which contains the output files in the case ``save`` is True. grid_name: str, optional Name of the fits file containing the model grid (numpy array) AFTER convolution+resampling as the observed spectrum given as input. If provided, will read it if it exists (and resamp_before is set method : {"single", "multi", "classic"}, str optional Flavor of nested sampling. npoints : int optional Number of active points. Must be >> ndim+1, otherwise will produce bad results. For UltraNest, this is the minimum number of active points. dlogz : float, optional Target evidence uncertainty. Iterations will stop when the estimated contribution of the remaining prior volume to the total evidence falls below this threshold. Explicitly, the stopping criterion is log(z + z_est) - log(z) < dlogz where z is the current evidence from all saved samples, and z_est is the estimated contribution from the remaining volume. This option and decline_factor are mutually exclusive. If neither is specified, the default is dlogz=0.2. decline_factor : float, optional If supplied, iteration will stop when the weight (likelihood times prior volume) of newly saved samples has been declining for decline_factor * nsamples consecutive samples. A value of 1.0 seems to work pretty well. rstate : random instance, optional RandomState instance. If not given, the global random state of the numpy.random module will be used. kwargs: optional Additional optional arguments to either the `nestle.sample` or `ultranest.ReactiveNestedSampler.run` functions. Returns ------- res : nestle object ``Nestle`` object with the nested sampling results, including the posterior samples. Notes ----- Nested Sampling is a computational approach for integrating posterior probability in order to compare models in Bayesian statistics. It is similar to Markov Chain Monte Carlo (MCMC) in that it generates samples that can be used to estimate the posterior probability distribution. Unlike MCMC, the nature of the sampling also allows one to calculate the integral of the distribution. It also happens to be a pretty good method for robustly finding global maxima. Nestle documentation: http://kbarbary.github.io/nestle/ Convergence: http://kbarbary.github.io/nestle/stopping.html Nested sampling has no well-defined stopping point. As iterations continue, the active points sample a smaller and smaller region of prior space. This can continue indefinitely. Unlike typical MCMC methods, we don't gain any additional precision on the results by letting the algorithm run longer; the precision is determined at the outset by the number of active points. So, we want to stop iterations as soon as we think the active points are doing a pretty good job sampling the remaining prior volume - once we've converged to the highest-likelihood regions such that the likelihood is relatively flat within the remaining prior volume. Method: The trick in nested sampling is to, at each step in the algorithm, efficiently choose a new point in parameter space drawn with uniform probability from the parameter space with likelihood greater than the current likelihood constraint. The different methods all use the current set of active points as an indicator of where the target parameter space lies, but differ in how they select new points from it: - "classic" is close to the method described in [SKI04]_. - "single" [MUK06]_ determines a single ellipsoid that bounds all active \ points, enlarges the ellipsoid by a user-settable factor, and \ selects a new point at random from within the ellipsoid. - "multiple" [FER09]_ (Multinest). In cases where the posterior is \ multi-modal, the single-ellipsoid method can be extremely inefficient. \ In such situations, there are clusters of active points on separate \ high-likelihood regions separated by regions of lower likelihood. Bounding \ all points in a single ellipsoid means that the ellipsoid includes the \ lower-likelihood regions we wish to avoid sampling from.\ The solution is to detect these clusters and bound them in separate\ ellipsoids. For this, we use a recursive process where we perform\ K-means clustering with K=2. If the resulting two ellipsoids have a\ significantly lower total volume than the parent ellipsoid (less than half),\ we accept the split and repeat the clustering and volume test on each of\ the two subset of points. This process continues recursively.\ Alternatively, if the total ellipse volume is significantly greater\ than expected (based on the expected density of points) this indicates\ that there may be more than two clusters and that K=2 was not an\ appropriate cluster division.\ We therefore still try to subdivide the clusters recursively. However,\ we still only accept the final split into N clusters if the total volume\ decrease is significant. Note ---- - If several filter filenames are provided in ``instru_res``, the filter files must all have the same format and wavelength units (for reading by the same ``filter_reader`` snippet or default function). - ``grid_param_list`` and ``model_grid`` shouldn't contain grids on radius and Av. For a combined grid model + black body fit, just provide the list of parameters probed by the grid to ``grid_param_list``, and provide values for 'Tbbn' and 'Rbbn' to ``initial_state``, ``labels`` and ``bounds``. """ # ----------------------- Preparation/Formatting -------------------------- nparams = len(init) if grid_param_list is not None: if model_grid is None and model_reader is None: msg = "Either model_grid or model_reader have to be provided" raise TypeError(msg) n_gparams = len(grid_param_list) gp_dims = [] for nn in range(n_gparams): gp_dims.append(len(grid_param_list[nn])) gp_dims = tuple(gp_dims) else: n_gparams = 0 # format emission line dictionary and em grid if len(em_grid)>0: n_em = len(em_grid) em_dims = [] for lab in labels: if lab in em_grid.keys(): em_dims.append(len(em_grid[lab])) em_dims = tuple(em_dims) # update the grids depending on input units => make it surface flux idx_R = labels.index('R') for key, val in em_lines.items(): if val[1] == 'L': idx_line = labels.index(key) # adapt grid R_si = init[idx_R]*con.R_jup.value conv_fac = 4*np.pi*R_si**2 tmp = np.array(em_grid[key])/conv_fac em_grid[key] = tmp.tolist() # adapt ini state init = list(init) init[idx_line] /= conv_fac init = tuple(init) #adapt bounds bounds_ori = list(bounds[key]) bounds[key] = (bounds_ori[0]/conv_fac, bounds_ori[1]/conv_fac) elif val[1] == 'LogL': idx_line = labels.index(key) R_si = init[idx_R]*con.R_jup.value conv_fac = con.L_sun.value/(4*np.pi*R_si**2) tmp = np.power(10,np.array(em_grid[key]))*conv_fac em_grid[key] = tmp.tolist() # adapt ini state init = list(init) init[idx_line] = conv_fac*10**init[idx_line] init = tuple(init) #adapt bounds bounds_ori = list(bounds[key]) bounds[key] = (conv_fac*10**bounds_ori[0], conv_fac*10**bounds_ori[1]) if em_lines[key][2] is not None: if em_lines[key][-1] == 'km/s': v = em_lines[key][2] em_lines_tmp = list(em_lines[key]) em_lines_tmp[2] = (1000*v/con.c.value)*em_lines[key][0] em_lines_tmp[3] = 'mu' em_lines[key] = tuple(em_lines_tmp) elif em_lines[key][-1] == 'nm': em_lines_tmp = list(em_lines[key]) em_lines_tmp[2] = em_lines[key][2]/1000 em_lines_tmp[3] = 'mu' em_lines[key] = tuple(em_lines_tmp) elif em_lines[key][-1] != 'mu': msg = "Invalid unit of FWHM for line injection" raise ValueError(msg) if model_grid is not None and grid_param_list is not None: if model_grid.ndim-2 != n_gparams: msg = "Ndim-2 of model_grid should match len(grid_param_list)" raise TypeError(msg) # Check model grid parameters extend beyond bounds to avoid extrapolation if grid_param_list is not None: for pp in range(n_gparams): if grid_param_list[pp][0]>bounds[labels[pp]][0]: msg= "Grid has to extend beyond bounds for {}." msg+="\n Consider increasing the lower bound to >{}." raise ValueError(msg.format(labels[pp],grid_param_list[pp][0])) if grid_param_list[pp][-1]<bounds[labels[pp]][1]: msg= "Grid has to extend beyond bounds for {}." msg+="\n Consider decreasing the upper bound to <{}." raise ValueError(msg.format(labels[pp],grid_param_list[pp][1])) # Check initial state is within bounds for all params (not only grid) for pp in range(nparams): if init[pp]<bounds[labels[pp]][0]: msg= "Initial state has to be within bounds for {}." msg+="\n Consider decreasing the lower bound to <{}." raise ValueError(msg.format(labels[pp],init[pp])) if init[pp]>bounds[labels[pp]][1]: msg= "Initial state has to be within bounds for {}." msg+="\n Consider decreasing the upper bound to >{}." raise ValueError(msg.format(labels[pp],init[pp])) # Prepare model grid: convolve+resample models as observations if resamp_before and grid_param_list is not None: if isfile(output_dir+grid_name): model_grid = open_fits(output_dir+grid_name) # check its shape is consistent with grid_param_list if model_grid.shape[:n_gparams] != gp_dims: msg="the loaded model grid ({}) doesn't have expected dims ({})" raise TypeError(msg.format(model_grid.shape,gp_dims)) elif model_grid.shape[-2] != len(lbda_obs): msg="the loaded model grid doesn't have expected WL dimension" raise TypeError(msg) elif model_grid.shape[-1] != 2: msg="the loaded model grid doesn't have expected last dimension" raise TypeError(msg) elif len(em_grid) > 0: if model_grid.shape[n_gparams:n_gparams+n_em] != em_dims: msg="loaded model grid ({}) doesn't have expected dims ({})" raise TypeError(msg.format(model_grid.shape,em_dims)) else: model_grid = make_resampled_models(lbda_obs, grid_param_list, model_grid, model_reader, em_lines, em_grid, dlbda_obs, instru_res, instru_idx, filter_reader, interp_nonexist) if output_dir and grid_name: write_fits(output_dir+grid_name, model_grid) # note: if model_grid is provided, it is still resampled to the # same wavelengths as observed spectrum. However, if a fits name is # provided in grid_name and that file exists, it is assumed the model # grid in it is already resampled to match lbda_obs. # -------------- Definition of utilities for nested sampling -------------- def prior_transform(x): """ Computes the transformation from the unit distribution `[0, 1]` to parameter space. Uniform distributions are assumed for all parameters. Notes ----- The prior transform function is used to specify the Bayesian prior for the problem, in a round-about way. It is a transformation from a space where variables are independently and uniformly distributed between 0 and 1 to the parameter space of interest. For independent parameters, this would be the product of the inverse cumulative distribution function (also known as the percent point function or quantile function) for each parameter. http://kbarbary.github.io/nestle/prior.html """ # uniform priors pt = [] for p in range(nparams): pmin = bounds[labels[p]][0] pmax = bounds[labels[p]][1] pt.append(x[p] * (pmax - pmin) + pmin) if priors is not None: # replace with Gaussian prior where relevant for key, prior in priors.items(): if key == 'M' and 'logg' in labels: msg = "Mass prior only available for MCMC sampling" raise ValueError(msg) else: idx_prior = labels.index(key) pt[idx_prior] = prior[0] + prior[1] * ndtri(x) return np.array(pt) def f(param): return lnlike(param, labels, grid_param_list, lbda_obs, spec_obs, err_obs, dist, model_grid=model_grid, model_reader=model_reader, em_lines=em_lines, em_grid=em_grid, dlbda_obs=dlbda_obs, instru_corr=instru_corr, instru_res=instru_res, instru_idx=instru_idx, use_weights=use_weights, filter_reader=filter_reader, AV_bef_bb=AV_bef_bb, units_obs=units_obs, units_mod=units_mod, interp_order=interp_order) # ------------------------ Actual sampling -------------------------------- if verbose: start = time_ini() if verbose: print('Prior bounds on parameters:') for p in range(nparams): pmin = bounds[labels[p]][0] pmax = bounds[labels[p]][1] print('{} [{},{}]'.format(labels[p], pmin, pmax)) print('\nUsing {} active points'.format(npoints)) if sampler == 'nestle': final_res = nestle.sample(f, prior_transform, ndim=nparams, method=method, npoints=npoints, dlogz=dlogz, **kwargs) elif sampler == 'ultranest': if isinstance(labels, tuple): labels = list(labels) un_sampler = ultranest.ReactiveNestedSampler(labels, f, prior_transform, log_dir=output_dir, resume=True) res = un_sampler.run(min_num_live_points=npoints, dlogz=dlogz, **kwargs) final_res = (un_sampler, res) if verbose: print('\nTotal running time:') timing(start) return final_res
[docs]def show_nestle_results(ns_object, labels, method, burnin=0.4, bins=None, cfd=68.27, units=None, ndig=None, labels_plot=None, save=False, output_dir='/', plot=False, **kwargs): """ Show the results obtained with the Nestle sampler: summary, parameters with errors, walk and corner plots. Returns best-fit values and uncertatinties. Parameters ---------- ns_object: numpy.array The nestle object returned from `nested_spec_sampling`. labels: Tuple of strings Tuple of labels in the same order as initial_state: - first all parameters related to loaded models (e.g. 'Teff', 'logg') - then the planet photometric radius 'R', in Jupiter radius - (optionally) the flux of emission lines (labels should match those \ in the em_lines dictionary), in units of the model spectrum (times mu) - (optionally) the optical extinction 'Av', in mag - (optionally) the ratio of total to selective optical extinction 'Rv' - (optionally) 'Tbb1', 'Rbb1', 'Tbb2', 'Rbb2', etc. for each extra bb \ contribution. method : {"single", "multi", "classic"}, str optional Flavor of nested sampling. burnin: float, default: 0 The fraction of a walker we want to discard. bins: int, optional The number of bins used to sample the posterior distributions. cfd: float, optional The confidence level given in percentage. units: tuple, opt Tuple of strings containing units for each parameter. If provided, mcmc_res will be printed on top of each 1d posterior distribution along with these units. ndig: tuple, opt Number of digits precision for each printed parameter. labels_plot: tuple, opt Labels corresponding to parameter names, used for the plot. If None, will use "labels" passed in kwargs. save: boolean, default: False If True, a pdf file is created. output_dir: str, optional The name of the output directory which contains the output files in the case ``save`` is True. plot: bool, optional Whether to show the plots (instead of saving them). kwargs: Additional optional arguments passed to `confidence` (matplotlib optional arguments for histograms). Returns ------- final_res: numpy ndarray Best-fit parameters and uncertainties (corresponding to 68% confidence interval). Dimensions: nparams x 2. """ res = ns_object nsamples = res.samples.shape[0] indburnin = int(np.percentile(np.array(range(nsamples)), burnin * 100)) nparams = len(labels) print(res.summary()) print( '\nNatural log of prior volume and Weight corresponding to each sample') if save or plot: plt.figure(figsize=(12, 4)) plt.subplot(1, 2, 1) plt.plot(res.logvol, '.', alpha=0.5, color='gray') plt.xlabel('samples') plt.ylabel('logvol') plt.vlines(indburnin, res.logvol.min(), res.logvol.max(), linestyles='dotted') plt.subplot(1, 2, 2) plt.plot(res.weights, '.', alpha=0.5, color='gray') plt.xlabel('samples') plt.ylabel('weights') plt.vlines(indburnin, res.weights.min(), res.weights.max(), linestyles='dotted') if save: plt.savefig(output_dir+'Nestle-{}_results.pdf'.format(method)) if plot: plt.show() print("\nWalk plots before the burnin") show_walk_plot(np.expand_dims(res.samples, axis=0), labels) if burnin > 0: print("\nWalk plots after the burnin") show_walk_plot(np.expand_dims(res.samples[indburnin:], axis=0), labels) if save: plt.savefig(output_dir+'Nestle-{}_walk_plots.pdf'.format(method)) mean, cov = nestle.mean_and_cov(res.samples[indburnin:], res.weights[indburnin:]) print("\nWeighted mean +- sqrt(covariance)") if ndig is None: ndig = [3]*len(labels) for p in range(nparams): fmt = "{{:.{0}f}}".format(ndig[p]).format print(r"{0} = {1} +/- {2}".format(labels[p], fmt(mean[p]), fmt(np.sqrt(cov[p, p])))) if save: with open(output_dir+'Nestle-{}_sampling.txt'.format(method), "w") as f: f.write('#################################\n') f.write('#### CONFIDENCE INTERVALS ###\n') f.write('#################################\n') f.write(' \n') f.write('Results of the NESTLE SAMPLING fit\n') f.write('----------------------------------\n ') f.write(' \n') f.write("\nWeighted mean +- sqrt(covariance)\n") for p in range(nparams): fmt = "{{:.{0}f}}".format(ndig[p]).format f.write(r"{0} = {1} +/- {2}\n".format(labels[p], fmt(mean[p]), fmt(np.sqrt(cov[p, p])))) final_res = np.zeros([nparams,2]) for p in range(nparams): final_res[p] = [mean[p], np.sqrt(cov[p, p])] if bins is None: bins = int(np.sqrt(res.samples[indburnin:].shape[0])) print("\nHist bins =", bins) if save or plot: show_corner_plot(res.samples[indburnin:], burnin=burnin, save=save, output_dir=output_dir, mcmc_res=final_res, units=units, ndig=ndig, labels_plot=labels_plot, plot_name='Nestle-{}_corner_plot.pdf'.format(method), labels=labels) if save: plt.savefig(output_dir+'Nestle-{}_corner.pdf'.format(method)) if plot: plt.show() print('\nConfidence intervals') if save or plot: _ = confidence(res.samples[indburnin:], labels, cfd=cfd, bins=bins, weights=res.weights[indburnin:], gaussian_fit=True, verbose=True, save=False, **kwargs) if save: fn = output_dir+'Nestle-{}_confi_hist_gaussfit.pdf' plt.savefig(fn.format(method)) if plot: plt.show() return final_res
[docs]def show_ultranest_results(un_object, labels, grid_param_list, dist, bins=None, cfd=68.27, ndig=None, save=False, output_dir='/', plot=False, col='b', units=None, labels_plot=None, lbda_obs=None, spec_obs=None, spec_obs_err=None, n_pts=None, title=None, figsize=(8,6), **kwargs): """ Shows the results obtained with the Ultranest sampler: summary, parameters with errors, walk and corner plots. Returns best-fit values and uncertatinties. Parameters ---------- un_object: object The UltraNest Sampler object returned by nested_spec_sampling. labels: Tuple of strings Tuple of labels in the same order as initial_state: - first all parameters related to loaded models (e.g. 'Teff', 'logg') - then the planet photometric radius 'R', in Jupiter radius - (optionally) the flux of emission lines (labels should match those \ in the em_lines dictionary), in units of the model spectrum (times mu) - (optionally) the optical extinction 'Av', in mag - (optionally) the ratio of total to selective optical extinction 'Rv' - (optionally) 'Tbb1', 'Rbb1', 'Tbb2', 'Rbb2', etc. for each extra bb \ contribution. grid_param_list : list of 1d numpy arrays/lists Should contain list/numpy 1d arrays with available grid of model parameters (should only contain the sampled parameters, not the models themselves). The models will be loaded with ``model_reader``. dist : float Distance in parsec, used for flux scaling of the models. bins: int, optional The number of bins used to sample the posterior distributions. cfd: float, optional The confidence level given in percentage. ndig: tuple, opt Number of digits precision for each printed parameter. save: boolean, default: False If True, a pdf file is created. output_dir: str, optional The name of the output directory which contains the output files in the case ``save`` is True. plot: bool, optional Whether to show the best-fit model against data. col: str, optional Color used for data points. lbda_obs, spec_obs, spec_obs_err: 1d ndarrays, optional Must be provided if plot is set to True n_pts: None or int, optional If None, models will be sampled at the same resolution as measured spectrum for plot. If an integer, corresponds to the number of sampled points (uniform sampling) between the first and last point of the measured spectrum. title: str, optional If plot is set to True, title of the plot. kwargs: Additional optional arguments passed to `nested_spec_sampling` - only used if plot is set to True and model parameters are evaluated. Returns ------- final_res: numpy ndarray Best-fit parameters and uncertainties (corresponding to 68% confidence interval). Dimensions: nparams x 2. """ un_sampler, res = un_object # print results un_sampler.print_results() if save or plot: # show run un_sampler.plot_run() if save: plt.savefig(output_dir+'UltraNest_run.pdf') if plot: plt.show() # show trace cornerplot un_sampler.plot_trace() if save: plt.savefig(output_dir+'UltraNest_trace.pdf') if plot: plt.show() burned_res = un_burning(res) # show results as table df = pd.DataFrame(data=res['samples'], columns=res['paramnames']) df.describe() # plot the best fit if save or plot: if lbda_obs is None or spec_obs is None or spec_obs_err is None: msg = "For the plot to be made, lbda_obs, spec_obs and spec_obs_err" msg += " must be provided" raise ValueError(msg) plt.figure(figsize=figsize) if title is not None: plt.title(title) plt.xlabel(r'Wavelength ($\mu$m)') plt.ylabel(r'$\lambda F_{\lambda}$ (W m-2)') plt.errorbar(x=lbda_obs, y=lbda_obs*spec_obs, yerr=spec_obs_err, marker='o', ls=' ', color=col) if n_pts is None: lbda_grid = lbda_obs.copy() else: lbda_grid = np.linspace(lbda_obs[0], lbda_obs[-1], n_pts) band = PredictionBand(lbda_grid) # go through the solutions for params in un_sampler.results['samples']: # compute for each time the model mod = make_model_from_params(params, labels, grid_param_list, dist, lbda_obs=lbda_grid, **kwargs) band.add(lbda_grid*mod[1]) band.line(color='k') # add 1 sigma quantile band.shade(color='k', alpha=0.3) # add wider quantile (0.01 .. 0.99) band.shade(q=0.49, color='gray', alpha=0.2) if save: plt.savefig(output_dir+"Best-fit_UltraNest.pdf", bbox_inches='tight') print('\nConfidence intervals') if bins is None: bins = int(np.sqrt(burned_res[0].shape[0])) print("\nHist bins =", bins) if save or plot: val_max, confidenceInterval = confidence(burned_res[0], labels, cfd=cfd, bins=bins, weights=burned_res[1], gaussian_fit=False, verbose=True, save=save) if save: plt.savefig(output_dir+'UltraNest_confi_hist.pdf') if plot: plt.show() mu, sig = confidence(burned_res[0], labels, cfd=cfd, bins=bins, weights=burned_res[1], gaussian_fit=True, verbose=True, save=save) if save: plt.savefig(output_dir+'UltraNest_confi_hist_gaussfit.pdf') if plot: plt.show() nparams = len(labels) if ndig is None: ndig = [3]*len(labels) for p in range(nparams): fmt = "{{:.{0}f}}".format(ndig[p]).format print(r"{0} = {1} +/- {2}".format(labels[p], fmt(mu[p]), fmt(np.sqrt(sig[p])))) if save: with open(output_dir+'UltraNest_sampling.txt', "w") as f: f.write('#################################\n') f.write('#### CONFIDENCE INTERVALS ###\n') f.write('#################################\n') f.write(' \n') f.write('Results of the NESTED SAMPLING (UltraNest)\n') f.write('------------------------------------------\n ') f.write(' \n') f.write("\nMost likely value [{}% confidence interval]\n".format(cfd)) for p in range(nparams): fmt = "{{:.{0}f}}".format(ndig[p]).format line = r"{0} = {1} [{2}, {3}] \n" f.write(line.format(labels[p], fmt(val_max[labels[p]]), fmt(confidenceInterval[labels[p]][0]), fmt(confidenceInterval[labels[p]][1]))) f.write("\nGaussian fit results: Weighted mean +- sqrt(covariance) \n") for p in range(nparams): fmt = "{{:.{0}f}}".format(ndig[p]).format f.write(r"{0} = {1} +/- {2}\n".format(labels[p], fmt(mu[p]), fmt(sig[p]))) if plot or save: # show corner plot show_corner_plot(burned_res[0], save=save, units=units, ndig=ndig, mcmc_res=(val_max, confidenceInterval), labels_plot=labels_plot, output_dir=output_dir, plot_name='UltraNest-corner_plot.pdf', labels=labels, weights=burned_res[1]) if plot: plt.show() final_res = val_max, confidenceInterval return final_res